

Partnership for AiR Transportation Noise and Emission Reduction

An FAA/NASA/TC-sponsored Center of Excellence

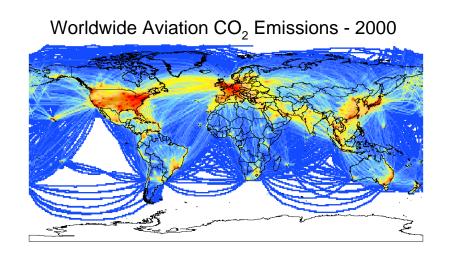
Alternative Jet Fuels

James Hileman, Hsin Min Wong, Pearl Donohoo, Mal Weiss, and Ian Waitz Massachusetts Institute of Technology

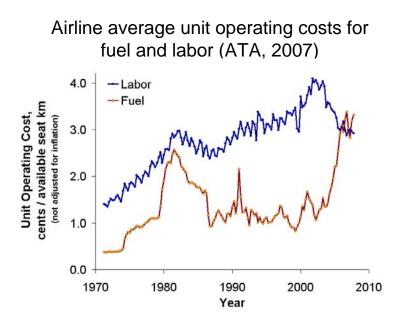
May 29, 2008

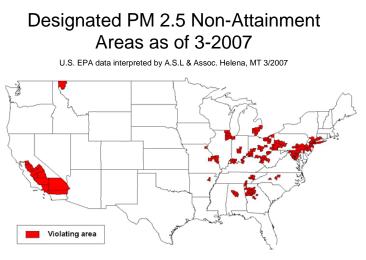
Transportation Research Board Environmental Impacts of Aviation (AV030) Mid-Year Meeting

This work was funded by the U.S. Federal Aviation Administration Office of Environment and Energy, under Grant 03-C-NE-MIT, Amendment Nos. 028 and 30. The Alternative Fuels Project is managed by Warren Gillette.


The alternative fuels project is being conducted in collaboration with the RAND Corporation with David Ortiz being the Principle Investigator.

Information about PARTNER and its research: <u>http://partner.aero</u>


Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the FAA, NASA or Transport Canada.


Motivation

- Two primary motivations for the evaluation of alternative fuels:
- The elevated level and volatility of the price of Jet A
- Environmental impacts of aviation on global climate change and air quality.

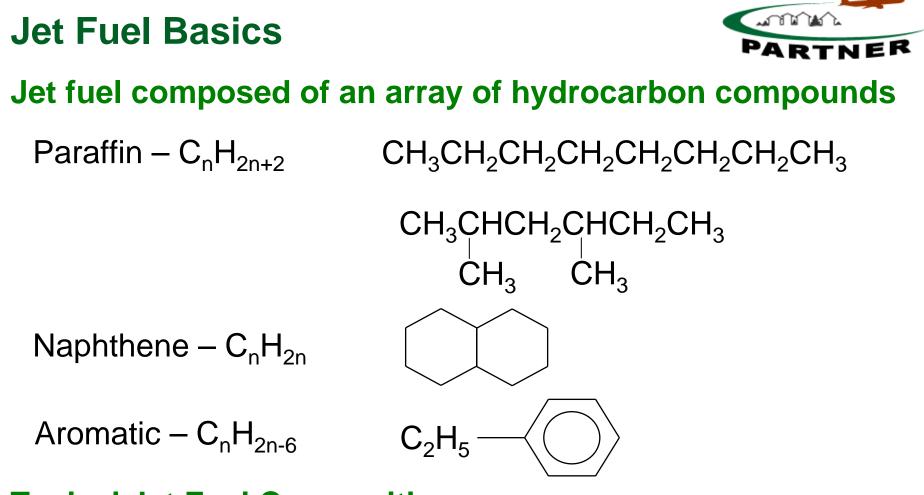
Outline

- Research Overview
- Potential Alternative Jet Fuels
- Environmental Life-Cycle (Well-to-Wake) Analysis
- Alternative Jet Fuel Comparison Matrix
- Summary and Next Steps

Alternative Jet Fuels Research Program

Central Questions:

Are there alternative fuels for commercial aviation that could:


- Reduce price and price volatility of jet fuel?
- Reduce the environmental impact of aviation?

Study Constraints:

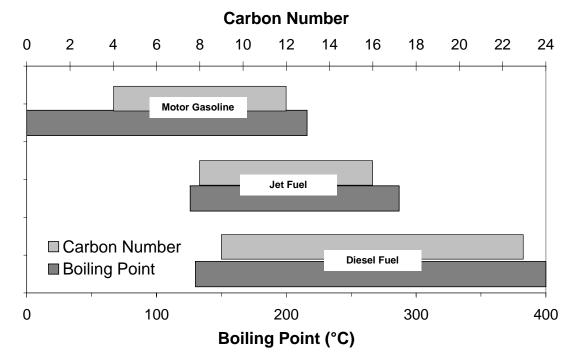
- Near-term emphasis, focus on availability in next decade.
- Consider fuels with a consistent set of metrics that focus on climate change, air quality, and production potential.

Extensive Collaboration:

• RAND, CAAFI, AFRL, CSSI, ECG, Cambridge University, Boeing, Air Canada, Pratt & Whitney, and GE.

Typical Jet Fuel Composition

60% Paraffins


20% Napthenes

20% Aromatics (single and double ring)

Similarity of Jet Fuel and Diesel

• Jet fuel and diesel are similar because of similar distillation ranges (key step in fuel refining)

- Refiners can shift fuel production from gasoline and diesel to jet fuel production based on demand
- Alternative jet fuels could be alternative diesel fuels

Potential Alternative Jet Fuels

Fischer-Tropsch (F-T) Fuels

PARTNER

Three major steps in process:

Gasification, F-T Synthesis & Upgrading

- Gasification: biomass, coal, or natural gas reacted with steam and oxygen to form syngas, a mixture of hydrogen and carbon monoxide (pollutants are scrubbed from syngas prior to next step)
- F-T Synthesis: syngas is passed over a catalyst to form a mixture of paraffinic hydrocarbons reaction results in long paraffin chains
- Upgrading: hydrogen gas is used to "crack" molecules to create desired range of products (diesel, jet, naptha, etc.)
 – cannot tune system to just produce one type of fuel

Resulting F-T fuel is 100% paraffinic with zero sulfur

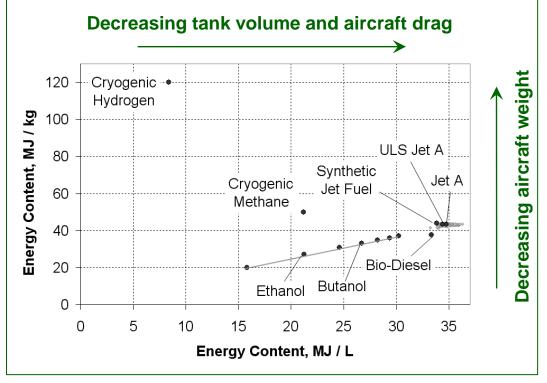
Potential Alternative Jet Fuels

Biojet, Biokerosene, and Biodiesel

- At present, no commonly accepted definition of biojet.
- For the PARTNER-RAND study, have distinct definitions.
- Biodiesel:
 - Created via chemical reaction of methanol with vegetable oil (methanol + oil \rightarrow fuel)
 - Blending limited to 5% freeze point
 - A.K.A. Fatty Acid Methyl Ester C_mH_nO₂CH₃
- Biokerosene:
 - Biodiesel from lower carbon fuels (such as coconut oil)
 - Lower freeze point -> higher blend percentages (20%)
 - <u>Not</u> a drop-in replacement
- Biojet:
 - Created via hydrotreatment of vegetable oil ($H_2 + oil \rightarrow fuel$)
 - Paraffinic fuel with zero oxygen content, similar to F-T fuels
 - Distillation range is similar to jet

Potential Alternative Jet Fuels

Ultra Low Sulfur (ULS) Jet Fuel


- Not an alternative feedstock instead, an alternative fuel composition (ultra low fuel sulfur content)
- Current jet fuel sulfur content
 - ~600ppm sulfur (varies by region and year)
- Diesel has an ultra-low sulfur standard
 - EPA requirements for 15 ppm ULS diesel
 - Hydrotreatment used for sulfur removal Results in 1% loss in volumetric energy content and small gain in gravimetric energy content
 - Added cost of between \$0.04 and \$0.07 per gallon
- Much of the ULS diesel fuel knowledge is directly transferable due to similarities in diesel fuel and jet fuel

Energy Content Comparison

Potential fuels:

- Conventional Jet-A
- Ultra Low Sulfur (ULS) Jet-A
- Fischer-Tropsch (F-T) fuels created from natural gas, coal, or biomass
- Fuels from bio-based oils: bio-jet and bio-diesel
- Alcohols
- Cryogenic fuels (not considered further)

Potential feed stocks:

- Conventional oil, tar sands, very heavy oil, or oil shale \rightarrow Jet A and ULS Jet A.
- Coal and natural gas \rightarrow F-T fuels.
- Renewable feed stocks \rightarrow F-T fuels, bio-diesel, bio-jet, and alcohols.

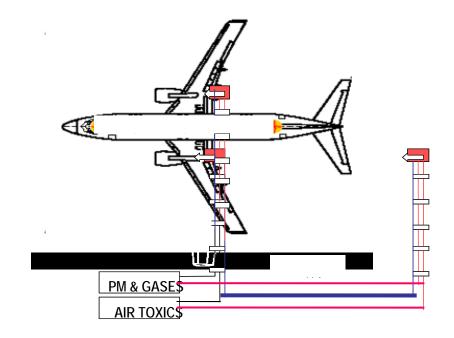
Compositional Comparison

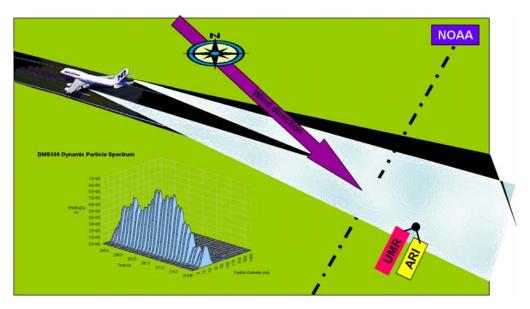
Potential fuels:	Chemical Composition	Aromatic Content	Sulfur Content
Conventional Jet-A	$C_m H_n$	~20%	~600 ppm
ULS Jet-A	C _m H _n	~20%	under 15 ppm
Synthetic Paraffinic Kerosene Fuels F-T fuel from natural gas, coal, biomass Bio-jet from hydrotreated bio-based oils 	C _m H _n	~0	under 15 ppm
Bio-diesel / Bio-kerosene	$C_m H_n O_2 C H_3$	0	~50 ppm
Butanol	C ₄ H ₉ OH	0	under 15 ppm
Ethanol	C ₂ H ₅ OH	0	under 15 ppm

Importance to Air Quality:

Many airports operate in PM2.5 non-attainment areas.

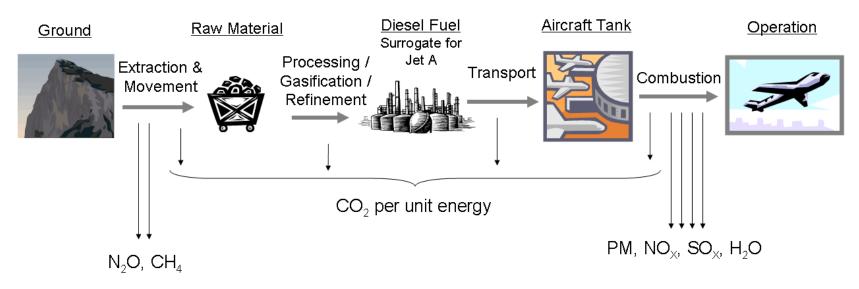
Low aromatic fuels have reduced soot emissions, a component of PM2.5.


Sulfur oxides (resulting from combustion) result in PM2.5.


PARTNER Research (led by Missouri University of Science and Technology)

Aircraft particulate matter (PM) measurements

- Measured hundreds of aircraft
 - Operational
 - After hours
- Compared and assessed measurement methods
- Modeled PM and precursor behavior
- Measured and modeled plume behavior
- Analyzing baseline and alternative fuels
- Data will feed into environmental modeling



Environmental Life-Cycle (Well-to-Wake) Analysis

Overview of Analysis Procedure

• Examine fuel life-cycle from "well-to-wake."

- Analyze fleet-wide alternative fuel use.
- Estimate emissions affecting air quality and climate change.
- Use existing tools:
 - Aircraft analysis via FAA-NASA-TC tool suite (Aviation Environmental Portfolio Management Tool, APMT, and Aviation Environmental Design Tool, AEDT).¹
 - Fuel analysis via GREET framework (Argonne National Laboratory Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) with inputs that reflect the range of values found in literature.²

Environmental Life-Cycle (Well-to-Wake) Analysis

Limited Details of Analysis Procedure

Scale worldwide aircraft fuel use and emissions inventory (AEDT).

Aircraft fuel weight, volume, and energy

- Combine Breguet range equation, fuel energy content, and aircraft performance data to determine fuel use scaling.
- Ignore requisite aircraft and infrastructure modifications.

Well-to-Tank emissions

- Modify GREET framework to examine jet fuel (GREET designed for ground transportation) results presented here based on diesel fuel.
- Utilize data from literature to place bounds on lifecycle emissions

Tank-to-Wake (combustion) emissions affecting climate change

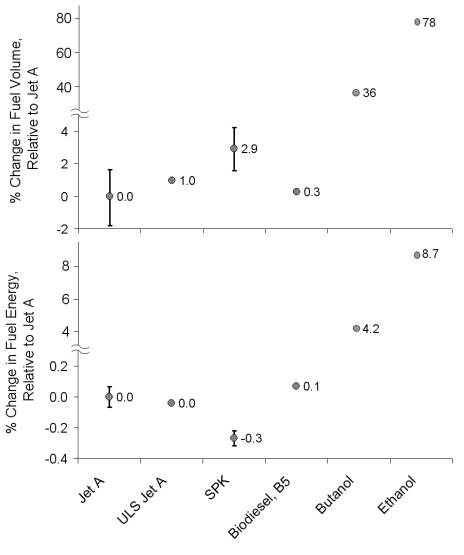
• Aircraft fuel weight (from above) combined with emission indices to estimate CO_2 , H_2O , NO_X , and SO_X .

Tank-to-Wake (combustion) emissions affecting air quality

- Takeoff fuel use scaled by ratio of energy contents.
- Primary particulate matter scaled by change in fuel use, change in fuel sulfur content, and parameterization of soot emissions.
- NO_X scaled by change in fuel use.
- SO_X estimated from change in fuel use and fuel sulfur content.

Jet A:

- Variability based on PQIS data.
- ULS within Jet A variability.


Synthetic Paraffinic Kerosene:

- Require more fuel volume but less fuel energy.
- Variability based on measured energy content from literature.

Alcohols

- Require much more energy.
- Better suited for ground transportation.

Preliminary results, do not cite or quote

Environmental Life-Cycle (Well-to-Wake) Analysis

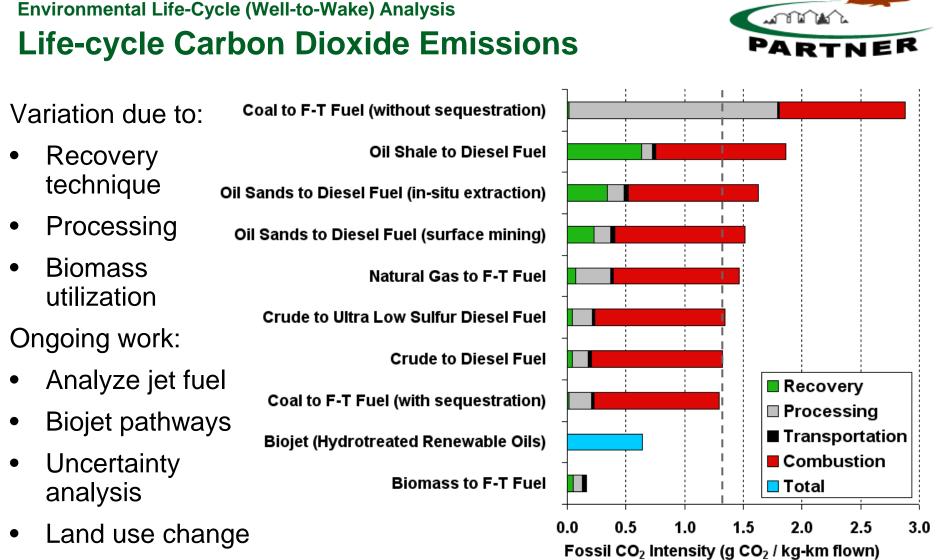
Fuel Use & Fleet-wide CO₂ Emissions

Life-Cycle CO_2 typically given in g CO_2 / MJ or per distance traveled.

For aviation, need to consider lifecycle carbon dioxide emissions per payload-distance flown

Obtain by combining fuel use change with lifecycle CO₂ emissions.

Definition of CO₂ Intensity:

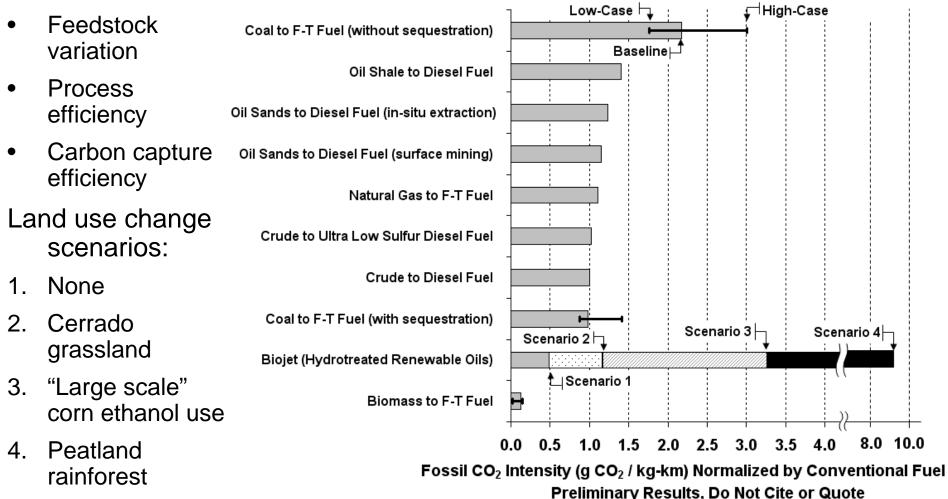

$$= \left(\frac{\text{Energy Use}}{\text{Payload * Distance}}\right) (\text{Energy Ratio}) (\text{Lifecycle CO}_2)$$
$$= \left(\frac{\text{MJ}_{\text{Jet A}}}{\text{kg} \cdot \text{km}}\right) \left(\frac{\text{MJ}_{\text{Alt Fuel}}}{\text{MJ}_{\text{Jet A}}}\right) \left(\frac{\text{g CO}_2}{\text{MJ}_{\text{Alt Fuel}}}\right) = \frac{\text{g CO}_2}{\text{kg} \cdot \text{km}}$$

Jet A CO_2 Intensity:

U.S. commercial fleet achieved 0.015 MJ / kg-km in 2005

$$= \left(0.015 \frac{\text{MJ}_{\text{Jet A}}}{\text{kg} \cdot \text{km}}\right) \left(1\right) \left(87 \frac{\text{g CO}_2}{\text{MJ}_{\text{Jet A}}}\right) = 1.3 \frac{\text{g CO}_2}{\text{kg} \cdot \text{km}}$$

CO₂ Intensity of 1.3 g CO2 / kg-km for U.S. fleet in 2005



Fossil CO₂ intensity (g CO₂ / kg-km flown) Preliminary Results, Do Not Cite or Quote

To reduce carbon dioxide emissions, need biofuels created from waste products or harvests from non farm land. Environmental Life-Cycle (Well-to-Wake) Analysis
Impact of Uncertainties

Uncertainties:

In general, life-cycle emissions are not deterministic, "Point Values." Instead, they are better defined as scenario-dependent ranges.

PARTNER-RAND Alternative Jet Fuel Report

Report presents analysis of multiple fuels and feedstocks

- Compare fuels using a set of metrics that emphasize compatibility, availability, environment, and use.
- Use metrics to create a fuel comparison matrix.
- Use environmental analysis and research by MIT and RAND Corporation.

Received reviews from two external reviewers, members of CAAFI, and FAA.

Present preliminary "Alternative Jet Fuel Comparison Matrix"

Comparison Metrics

Potential fuels compared using common set of metrics:

- Usability in current systems (aircraft and fuel infrastructure) without compromising safety
- Fuel availability within a given timeframe (technology readiness and supply potential)
- Reduced environmental impacts (climate change and air quality)
- Merit of aviation use versus ground transportation use

Comparison metrics for potential alternative fuels for aviation:

Compatibility	Fuel	Production	Carbon	Dioxide	Air	Merit of
in Current	Readiness	Production	Well-to-	Tank-to-	Quality	Aviation
Systems	Level	Potential	Wake	Wake		Use

Fuels and Feed Stocks

- Ultralow Sulfur (ULS) Jet A from:
 Conventional petroleum
- Conventional Jet A from:
 - Oil sands / very heavy oils
 - Oil shale using in-situ production
- Fischer-Tropsch (F-T) synthetic fuels from:
 - Coal (without and with CO₂ CCS)
 - Natural gas
 - Biomass
- Biodiesel from:
 - Treatment of vegetable oil with methanol
- Biojet from:
 - Hydrotreatment of vegetable oil
- Ethanol from:
 - Fermentation of corn
- Butanol from
 - Fermentation of corn

Fuel

ULS Jet A from conventional petroleum

Current-specification Jet A from oil sands or very heavy oil (VHO)

Current-specification Jet A from shale oil

F-T fuel from coal

F-T fuel from coal with sequestration

F-T fuel from natural gas

F-T fuel from biomass

Biodiesel (5%)

Biojet

Ethanol

Butanol

Matrix Structure

	Characteristics and Desirability in comparison to Current-Specification Jet A Derived from Conventional Petroleum						
	Compatibility in Current Systems		Production	Carbon	Dioxide	Air Quality	Merit of
Fuel		FRL	Potential	Well-to- Wake	Tank-to- Wake		Aviation Use
ULS Jet A from conventional petroleum	-	+++	+++	-	0	++	0
Current-specification Jet A from oil sands or very heavy oil (VHO)	0	+++	+		0	0	0
Current-specification Jet A from shale oil	0		rics to ch		rize tu	eis — 	0
F-T fuel from coal		++	+		+	++	0
F-T fuel from coal with sequestration		Fuel	s and fe	ed stoo	ks ⊧	++	0
F-T fuel from natural gas	-	++++		-	+	++	0
F-T fuel from biomass	-	+	-	+++	+	++	0
Biodiesel (5%)		+++	-	+	0	0	
Biojet (20%)	_	+	-	++	+	+	_
Ethanol (100%)			+	++	_	-/+	
Butanol (100%)		0		++	-	- / +	

Matrix Structure

	С	Characteristics and Desirability in comparison to Current-Specification Jet A Derived from Conventional Petroleum						
	Compatibility Carbon Dioxide					A i.r	Merit of	
Fuel		in Current Systems		Production Potential	Well-to- Wake	Tank-to- Wake	Air Quality	Aviation Use
ULS Jet A from conventional petroleum			+++	+++	-	0	++	0
Current-specification Jet A from oil sands or very	()	+++	+		0	0	0
heavy oil (VHO) Current-specification Jet		Rem	naind	der of pro	esenta	tion:		
A from shale oil	(D
F-T fuel from coal				matrix e				D
F-T fuel from coal with sequestration		р	relim	ninary an	alysis	results	-	D
F-T fuel from natural gas		• P	rese	nt each	columr	n indivi	dually	— D
F-T fuel from biomass		ea	ach	represer	nts a se	eparate	e study	. D
Biodiesel (5%)	_				h :			-
Biojet (20%)		 Columns combined to form matrix. 						ζ.
Ethanol (100%)	-	++ +/+						
Butanol (100%)	-	-	0		+++	-	- / +	

Usability in Current Systems

- Drop-in replacement fuels
 - Similar properties to conventional Jet A and can be blended with Jet A at high percentages.
 - Examples: ULS Jet A, Jet A from unconventional petroleum, F-T fuels, and biojet.
- Biodiesel
 - Concerns regarding freeze point and thermal stability.
 - If used, would have to be a light blend (<5%)
- Alcohols
 - Concerns regarding corrosiveness, energy content, vapor pressure, water solubility, and flash point.
- Large installed base of Jet A-specific infrastructure heavily favors drop-in fuels.

Fuel & Usability

ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	-
CURRENT SPEC. JET A FROM TAR SANDS / VHO	0
CURRENT SPEC. JET A FROM OIL SHALE	-
F-T FUEL FROM COAL	-
F-T FUEL FROM COAL W/ SEQUESTRATION	-
F-T FUEL FROM NATURAL GAS	-
F-T FUEL FROM BIOMASS	-
BIODIESEL (5%)	
BIOJET	-
ETHANOL	
BUTANOL	

Fuel Readiness Level (FRL)

- Qualitatively assess <u>current</u> technological maturity of fuel production process.
- FRL determined by least developed part of fuel production process.

FRL Description

	Fuel creation process is undergoing fundamental research and development at laboratory scale to prove viability of fuel creation concept.
	Fuel creation process is undergoing intermediate research and development to prove viability of individual components.
-	Fuel creation process is undergoing advanced research and development.
0	All relevant technologies that are necessary for fuel production have been proven.
+	Commercial pilot plant is under construction or in operation.
++	The fuel is in limited commercial production using fuel creation process.
+++	The fuel is in large-scale, commercial production using fuel creation process.

Fuel & FRL

ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	+++
CURRENT SPEC. JET A FROM TAR SANDS / VHO	+++
CURRENT SPEC. JET A FROM OIL SHALE	
F-T FUEL FROM COAL	+++
F-T FUEL FROM COAL W/ SEQUESTRATION	-/+
F-T FUEL FROM NATURAL GAS	+++
F-T FUEL FROM BIOMASS	+
BIODIESEL (5%)	+++
BIOJET	+
ETHANOL	+++
BUTANOL	+

Production Potential in Ten Years

• Alternative fuels not likely to be widely available in significant quantities in 10 years.

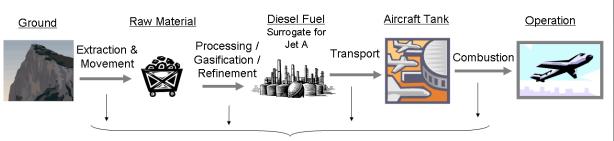
Fuel consumption, in millions of barrels per day

	World (2004)	USA (2004)
Motor Gasoline	20.9	9.1
Jet Fuel	4.8	1.6 *
Distillate (Diesel)	22.5	4.1

* 1.6 million barrels per day = 47,000 gallons per minute

Percent of Projected Jet A Demand in 2017 (2.1 mbpd) use North American resources; business as usual

~100%	~50%	~10%	~5%	~1%	~0.5%	~0.1%
+++	++	+	0	-		



Fuel & Production Potential

ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	+++
CURRENT SPEC. JET A FROM TAR SANDS / VHO	+
CURRENT SPEC. JET A FROM OIL SHALE	
F-T FUEL FROM COAL	+
F-T FUEL FROM COAL W/ SEQUESTRATION	+
F-T FUEL FROM NATURAL GAS	/+
F-T FUEL FROM BIOMASS	-
BIODIESEL (5%)	-/0
BIOJET	-/0
ETHANOL	+
BUTANOL	N/A

Lifecycle CO₂ Emissions

- Examined fuel life cycle to determine total carbon dioxide emissions using accepted data from the literature and Argonne National Laboratory GREET model.
- Data are on a per unit energy basis

CO₂ per unit energy

• Biomass-based fuels provide potential for substantial carbon dioxide reductions; land use changes add uncertainty.

Lifecycle CO₂ relative to Jet A from Conv. Petroleum

< 0.5X	0.5X to 0.9X	0.9X to 1.0X	~1.0X	1.0X to 1.1X	1.1X to 1.5X	> 1.5X
+++	++	+	0	-		

The define the couple co_2	
ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	-
CURRENT SPEC. JET A FROM TAR SANDS / VHO	
CURRENT SPEC. JET A FROM OIL SHALE	
F-T FUEL FROM COAL	
F-T FUEL FROM COAL W/ SEQUESTRATION	0
F-T FUEL FROM NATURAL GAS	
F-T FUEL FROM BIOMASS	+++
BIODIESEL (5%)	/+
BIOJET	/+++
ETHANOL	-/+++
BUTANOL	0/+++

Fuel & Lifecycle CO.

Air Quality Emissions

Estimated impact of fuel change on:

- Primary particulate matter
- Secondary particulate matter from sulfur oxide emissions
- Secondary particulate matter from emissions of nitrogen oxides
- Pluses/minuses refer to number of above that are reduced/increased by more than 10%.
- Alcohols impact uncertain due to NO_X , PM, and aldehydes.

Reducing sulfur / aromatics yields benefit.

Could get local air quality improvement by removing sulfur from Jet A.

Note: ULS Jet A may cost an additional \$0.04 to \$0.07 per gallon to produce and may suffer 1% reduction in volumetric energy density.

Fuel & AQ Emissions

ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	++
CURRENT SPEC. JET A FROM TAR SANDS / VHO	0
CURRENT SPEC. JET A FROM OIL SHALE	++
F-T FUEL FROM COAL	++
F-T FUEL FROM COAL W/ SEQUESTRATION	++
F-T FUEL FROM NATURAL GAS	++
F-T FUEL FROM BIOMASS	++
BIODIESEL (5%)	0
BIOJET	++
ETHANOL	-/+
BUTANOL	-/+

Merit of Aviation Use of Fuel

- Incentives of various transportation sectors to use alternative fuels (beyond shared CO₂ benefits):
- Octane / Cetane ground transportation pays a premium for these properties
- Energy Content aircraft suffer fuel economy penalty when using low energy fuels (fuel economy benefit with high energy)
- Water Vapor Emissions little climate impact when emitted from ground level and troposphere, larger climate impact when emitted into stratosphere
- Safety high vapor pressure and low flash point complicate ground handling

Fuel & Merit of Aviation Use

ULTRA LOW SULFUR JET A FROM CONV. PETROLEUM	0
CURRENT SPEC. JET A FROM TAR SANDS / VHO	0
CURRENT SPEC. JET A FROM OIL SHALE	0
F-T FUEL FROM COAL	0
F-T FUEL FROM COAL W/ SEQUESTRATION	0
F-T FUEL FROM NATURAL GAS	0
F-T FUEL FROM BIOMASS	0
BIODIESEL (5%)	
BIOJET	0
ETHANOL	
BUTANOL	

Matrix of Alternative Fuels for Commercial Aviation

Preliminary results, Do not cite or quote.

	Characteristics and Desirability in comparison to Current-Specification Jet A Derived from Conventional Petroleum						
Fuel	Compatibility in Current F Systems		FRL Production Potential	Carbon Dioxide		Air	Merit of
		FRL		Well-to- Wake	Tank-to- Wake	Quality	Aviation Use
ULS Jet A from conventional petroleum	-	+++	+++	-	0	++	0
Current-specification Jet A from oil sands or very heavy oil	0	+++	+	-	0	0	0
Current-specification Jet A from oil shale	-				0	++	0
F-T fuel from coal	-	+++	+		+	++	0
F-T fuel from coal with sequestration	-	-/+	+	0	+	++	0
F-T fuel from natural gas	-	+++	/+		+	++	0
F-T fuel from biomass	-	+	-	+++	+	++	0
Biodiesel (5%)		+++	-/0	/+	0	0	
Biojet	-	+	-/0	/+++	+	++	0
Ethanol		+++	+	-/+++	-	-/+	
Butanol		+	N/A	0/+++	-	-/+	

Summary

- Alcohols are not a viable alternative for aviation and are better suited for ground transportation.
- Low sulfur fuels (e.g., ULS Jet) could improve air quality and ULS Jet A could ease alternative fuel introduction.
- Coal-to-liquid fuels (via F-T process <u>with</u> CCS) have comparable lifecycle CO₂ to conventional fuel and their use could improve air quality. Without CCS, lifecycle CO₂ will double (or triple with low efficiency and poor quality coal).
- Alternative fuels exist that could both reduce lifecycle CO₂ and improve air quality (e.g., biojet and biomass-toliquids via F-T process), but at present the ability to produce these fuels is limited.
- Uncertainties in inputs and land use changes need to be considered in life-cycle analysis.

Ongoing Alternative Jet Fuels Research

- PARTNER-RAND Alternative Jet Fuels report being completed.
- Refining life-cycle analysis to estimate jet fuel.
- Cost-benefit analysis of alternative fuel use in ground support equipment is underway.
- Emission measurements from aircraft operating on alternative fuels.
- Aviation-specific life-cycle analysis tool being developed (joint effort of FAA AEE and Air Force Research Labs):
 - Well-to-tank analysis of lifecycle emissions of Jet Fuel production using GREET framework
 - Tank-to-wake analysis of Jet Fuel combustion using FAA-NASA-TC modeling tools
 - Impact analysis of well-to-wake emissions on air quality and global climate change using FAA-NASA-TC modeling tools
 - Creation of alternative fuel introduction scenarios
 - Assessment of environmental costs and benefits of fuel introduction scenarios.

References:

- 1. U.S. Federal Aviation Administration, Office of Energy and Environment, Aviation Environmental Models, May 2007. As of April, 2008: http://www.faa.gov/about/office_org/headquarters_offices/aep/models/
- 2. Argonne National Laboratory, "The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Version 1.7," http://www.transportation.anl.gov/software/GREET/.
- 3. Biojet CO_2 emission is average of values from industry:
 - Neste Oil, "NExBTL, second generation renewable diesel," <u>http://www.nesteoil.com/</u>.
 - Marker, T.L., "Opportunities for Biorenewables in Oil Refineries," U.S. Department of Energy Final Technical Report, DE-FG36-05GO15085, 2005. As of March 8, 2008: http://www.osti.gov/bridge/purl.cover.jsp?purl=/861458-Wv5uum/
 - Syntroleum, "Investor Presentation," March 2008, As of March 8, 2008: http://www.syntroleum.com/pdf/InvestorPresentation.pdf
- 4. Fargione, Joseph, J. Hill, D. Tilman, S. Polasky, P. Hawthorne. "Land Clearing and the Biofuel Carbon Debt," *Science*, Vol. 319. no. 5867, February 29, 2008, pp. 1235 1238. DOI: 10.1126/science.1152747.
- 5. Searchinger, Timothy, R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, T.-H. Yu. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," *Science*, Vol. 319. no. 5867, February 29, 2008, pp. 1238-1240. DOI:10.1126/science.1151861.

Backup Slides

Backup Slide
Local Air Quality Emissions

Fleet-wide landing and takeoff emissions

Fuel Type	∆Fuel Flow, Weight	∆ NO _X	∆SO _x	ΔΡΜ	
Jet A (90% of JP-8)	0.5% to -0.5%	0.5% to -0.5%	0.5% to -0.5%	0.5% to -0.5%	
Ultra Low Sulfur Jet A	-0.3%	-0.3%	-97.5%	-14.5%	
Synthetic Fuel	-1.6% to -2.3%	-1.6% to -2.3%	-97.5% to -97.6%	-14.5% to -77%	
5% Biodiesel Blend	0.7%	0.7%	-3.9%	-3.2% to -16.2%	
Butanol	30.4%	-	-96.7%	-	
Ethanol	60.3%	-	-96.0%	-	

* Values relative to mean JP-8 values from PQIS

** Results in table are preliminary, do not quote or cite

Several fuel options provide substantial SO_x reductions.

Synthetic fuels (F-T or biojet) offer potential for substantial primary PM reduction in addition to SO_x reductions.

Need to refine PM estimates based on recent measurements.

Backup Slide

Cruise Emissions

Fleet-wide cruise emissions (not life-cycle emissions)

Fuel Type	∆Fuel Burn, Weight	ΔCO_2	$\Delta H_2 O$	∆ NO _X	∆SO _x
Jet A (90% of JP-8)	0.5% to -0.6%	1.0% to -1.1%	-2.4% to 2.5%	0.5% to -0.6%	0.5% to -0.6%
Ultra Low Sulfur Jet A	-0.3%	-0.6%	1.4%	-0.3%	-97.5%
Synthetic Fuel	-1.9% to -2.6%	-3.3% to -4.7%	6.9% to 10.3%	-1.9% to -2.6%	-97.5% to -97.6%
5% Biodiesel Blend, B5	0.7%	0.2%	-0.2%	0.7%	-3.9%
Butanol	36%	2.1%	34.2%	-	-96.6%
Ethanol	74%	5.4%	66.1%	-	-95.6%

* Values relative to mean JP-8 values

** Results in table are preliminary, do not quote or cite

Alcohols are better suited for use in ground transportation because of increased energy requirement and increased water emissions.