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a change in drive voltage to maintain a constant vibrational amplitude. The density is measured via the
change in resonant frequency caused by a change in fluid density while the viscosity is measured by

monitoring the peak signal of the resonator. The dynamic viscosity measurement error between the new
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sensor and the calibration references ranges from 0.006 to 0.15 cP, or 0.6 to 8%. A variety of applications
for the sensor will be discussed.

© 2008 Elsevier B.V. Al rights reserved.

1. Introduction

Viscosity is often thought of as the fluid’s friction, resistance to
flow or the fluid’s resistance to shear when the fluid is in motion.
The viscosity of a fluid is often represented as a coefficient, which
describes the diffusion of momentum in the fluid. The measure-
ment of viscosity has been employed for many decades to monitor
and test lubricants, blood, mucus, adhesives, paints, fuels and other
fluids [1-5]. Viscosity measurements have been made using capil-
lary force, falling balls, moving paddles and vibrating tuning forks.
Several small standing acoustic wave (SAW) and microelectrome-
chanical systems (MEMS) viscometers have been developed in
recent years [3-7].

Micromachined resonating tubes have been used to measure
mass flow, density and chemical concentration [8-11]. Fig. 1 shows
a photograph of such a microtube. This paper will show that a res-
onating microtube can be used to measure both the density and
viscosity [12] of a fluid. The kinematic viscosity v (¢St or mm?/s) of
a fluid is given by the expression:

V=; 1)

where the 7 is dynamic viscosity (cP or mPas) and p is the density
(g/cm3) of the fluid.
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The density of a liquid p is given by the expression:

1 K;s )
=y [(4—n2f2) “mt:l (2}
where V is the internal volume of the resonant tube, m; is tube
mass, K; is the spring constant of the tube and f is the resonance
frequency of the tube. As can be seen by the expression above, the
density is inversely proportional to the square of the resonance fre-
quency. Results for density measurements made with a microtube
have been published previously [8,10,11]. The damping of the res-
onator can be used to measure dynamic viscosity. By measuring
both the density and dynamic viscosity the kinematic viscosity can
be calculated. The ability to measure these three fluid parameter,
as well as temperature and mass flow rate is a unique capability for
a single microfluidic chip. ’

2. Experimental procedures

The resonant microtubes used in this paper employ a MEMS
fabrication process, which uses a combination of plasma and wet
etching, photolithography, along with wafer bonding to form their
microfluidic chips {10,13]. The sensors produced with this process
employ a chip-level, vacuum package to reduce external damping of
the resonator. Fig. 1 shows an uncapped microtube resonator chip.
Fig. 2 shows a side-view drawing illustrating the position of the res-
onator, underlying metal electrodes, holes and vacuum cavity. The
silicon tube is anodically bonded to glass (Pyrex). This glass wafer
has metal electrodes, a thin-film temperature sensor and runners
used to carry electrical signals. Two holes in the bottom glass chip
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Fig. 1. The microfluidic chip and resonating microtube.
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Fig. 2. A side-view diagram of the MEMS chip, showing the resonating tube over
the metal electrodes and vacuum chip-level packaging.

admit fluid into the silicon microtubes. The tube is driven into res-
onance electrostatically and its motion sensed capacitively using
metal electrodes under the tube and accompanying electronic cir-
cuits connected to the MEMS chip via wire bonding. Fig. 3 shows
a photograph of the packaged sensor. The output of the MEMS
resonator is buffered, amplified and processed by the electronics
shown on the printed circuit board in Fig. 3.

NIST certified density/viscosity calibration standards (labeled
§3, N1, N2 and N4), purchased from Cannon Instruments Com-
pany, were used in this investigation. Table 1 lists the properties
of these standards at 25 °C. In addition other liquids such as Dex-
trose (sugar) solutions in water, IPA (isopropyl alcohol), methanol
and degassed, deionized water were first tested in a Brookfield
DV-I viscometer and Anton Paar 4500 density meter and/or the
density and viscosity values were obtained from the literature [14]
for pure fluids. The density and viscosity values obtained with the
sensor described in this paper were compared to the calibration
standards and to data taken from these other laboratory instru-
ments. The majority of the tests were done at room temperature
but a few samples were cooled or heated using an attached Peltier
panel.

Table 1

Data at 25 °C for the viscosity and density reference standards.

Liqtlid CPref (glem?) Trer (CP) . Vief (CSt)
s3 0.8644 3531 4085
N1 ) 0.7267 0.8602 1.184
N2 -0.7877 2.087 2,650
N4 0.7879 4.580 ’ 5773

Fig. 3. The packaged, MEMS-based viscosity sensor.

3. Results

Just as external gas molecules can dampen a resonator, so can
fluid within a resonating tube can dampen motion. To experimen-
tally examine this relationship, the peak amplitude or gain of the
resonator was monitored for different fluids. Fig. 4 shows how the
amplified gain, in terms of peak signal voltage out divided by the
drive voltage applied to the resonator, varied for a variety of flu-
ids tested at room temperature (25-29°C). The system maintains
a constant output voltage, so damping from the liquid requires an
increase in the drive voltage. The more viscous fluids such as stan-
dard N4 and Dextrose solutions dampen the resonator microtube
resulting in a lower gain than less viscous fluids like water and
methanol.

This type of resonator data for several fluids was used to develop
a dynamic viscosity output for the sensor shown in Fig. 3. Table 2
lists the experimental data taken for density and viscosity along
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Fig. 4. The amplified resonator gain at room temperature as a function of viscosity
for a variety of fluids.
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Fig. 5. A plot of dynamic viscosity error for the various samples tested.

Table 2

Experimenthl and reference data for test temperature, density and viscosity of sam-
ple liquids.

TCC) . - plglom?)

Liguid: Pret(glem®) * n(cP) :ner(cP) | w(cSY)
s3 7 971-9.73" 08750 . ..0.8749 5527 - 5576 . 6316
Ni [ 150-198 . -07321 07324 0894 0965 = 1:221
N2 G 294-297 07837 - 07844 1747 - 1898 © 2230
N4 . 284-287  0.7854 0.7855 4030 4150 - 5130
Water . - 254-25.5 . "0.9969 0:9969 0.866. 0861. 0868
IPA 1258259 - 0.7808 0.7805 1.866- - 2026 - 2.389
Méthanol © 256-257 07871 . 07871 0542° 0570 0688
Dex40% ~ 254-255 - 11610 . “1.1610 4529° 4570 - 3.901
Dex25% . - 252-253 11009 1.1003 - 2235 2220 2030
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Fig. 6. A plot of dynamic viscosity error for the range of dynamic viscosities mea-
sured.

with reference data. Since there was some variation in the test tem-
perature, there is some variation in the reference data[14] as well as
experimental data. The kinematic viscosity values listed in Table 2
are obtained by using the sensor density and dynamic viscosity data
and Eq.(1).

The samples sizes for Table 2 data ranged from 92 to 804 read-
ings per liquid. The standard deviations for density ranged from
0.00003 to 0.00011 g/cm? and for viscosities from 0.014 to 0.025 cP
for both the experimental data and reference data over the tem-
perature variation of the tests. Good agreement is found between
measurements and reference data for the density and dynamic
viscosity. The error from the references in 1 ranges from 0.006
to 0.15¢cP, or 0.6 to 8%. Figs. 5 and 6 plot the dynamic viscosity
error observed with the new MEMS-based meter as with respect to
several different fluids and then viscosities in the 0.5-6 cP range.

4. Discussion and future applications

Conventional viscometers [1,2] measure only the dynamic vis-
cosity of a fluid. A second test system such as a densitometer or

literature data for density is required to calculate the kinematic
viscosity. Kinematic viscosity is the preferred measurement for
lubricants and other applications [15]). A meter that can simul-
taneously measure fluid density and dynamic viscosity and then
calculate kinematic viscosity offers advantages in areas in which
kinematic viscosity is most important. In future work a wider range
of viscosities will be examined, the 0.5-6 cP range examined in the
current study covers the applications of solvents, intravenous solu-
tions and drugs, beverages and light fuels. A density meter based on
this technology [ 10] has already found use with thicker liquids. The
capability to test higher viscosities will allow more petrochemicals
and lubricants to be monitored with this new device.

Chemical concentration and density meters made with these
MEMS devices have been shown to function well a higher temper-
atures, 90-150°C[10,16]. Additional work to push the temperature
range of use for the MEMS viscometer will also be undertaken. Like
density and chemical concentration, viscosity is a fluid parameter
that does not require testing the entire fluid stream. Many vis-
cometers test batch samples, limiting their usefulness in industrial
and remote applications. Bypass fluidic packages already developed
for the MEMS density chips [17] could be employed to monitor
the viscosity in large flow rate, inline systems. Fig. 7 shows one
bypass package design for this sensor. A high temperature den-
sity and kinematic viscosity sensor that is MEMS-based may find
applications in oil quality sensing for large-volume automotive
applications. The microtube described in this paper has an on-chip
thin-film temperature sensor and has been used to make Coriolis
mass flow sensors [11]. Viscosity measurements have been made

Fig. 7. Cut-away diagram of a bypass package for the microfluidic viscosity and
density sensor.
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while taking mass flow rate data with the same resonating micro-
tube device.

5. Conclusions

This paper covered the use of a micromachined resonating tube
to measure both the dynamic viscosity and density of a fluid,
enabling the calculation of the kinematic viscosity. Dynamic vis-
cosity is measured using the damping effect that a fluid has on the
motion of the resonating tube. Damping requires a change in drive
voltage to maintain a constant vibrational amplitude. The density is
measured via the change in resonant frequency caused by a change
in fluid density. The dynamic viscosity measurement error between
the new sensor and the calibration references ranged from 0.006
to 0.15 cP, or 0.6 to 8%. A variety of sensor applications and future
improvements for the sensor were discussed. The ability to mea-
sure these three fluid parameter, as well as temperature is a unique
capability for a single microfluidic chip.
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