Wireless MEMS Sensor Platform
Compatible with Cell Phones and Laptops

Doug Sparks

Integrated Sensing Systems Inc. (ISSYS)

391 Airport Industrial Dr
Ypsilanti, MI 48198 USA
734-547-9896 ext 119
www.mems-issys.com
dsparks@mems-issys.com
Outline

1. Traditional Wireless Sensors
2. New Wireless Sensing System
3. Examples at ISSYS
4. Other Applications
5. Summary
Historically wireless sensor networks and systems often are customized sensors and electronics, some with low powered ASICs for the electronics.
ISSYS’ Wireless Pressure Sensing System

Two system components:

- Implantable pressure sensor(s)
- External handheld readout unit

Bio-pressure measured by the implant is read with handheld tester using RF telemetry

Goal = Tailored Treatment

Target Transmission Distance = 10-15 cm
System Overview

- Cylindrical implant device anchored in heart
- Hand held external Readout Unit with Antenna
- Computer user interface provides display and applies patient calibration at time of use, locally
- Network interface ports patient data to physician
Sensor Placed in Left Ventricle

ISSYS vs Millar Catheter Comparison
56 Days Implant Left Ventricle Apex

ISSYS Mean = 43.5 Millar Mean = 43.9 90 sec HR~108 bpm

Time (sec)
Potential Implant Applications

Human body is considered by many medical experts simply as an advanced biological plumbing system. As a result, knowing the pressure and flow in many places in the body is of significant medical value.

- Intracranial Pressure Monitors
 Acute & Chronic
- Cardiac Pressure Monitors
 Acute & Chronic
- Bladder Pressure Monitors
 for Incontinence
- GI Track
- Wireless Orthopedic Monitoring Concepts
Traditional Wireless Sensors

While traditional wireless sensor networks and system fill useful niches, the customized nature of the system slow wide spread use of this technology.
Outline

1. Traditional Wireless Sensors
2. New Wireless Sensing System
3. Examples at ISSYS
4. Other Applications
5. Summary
4 Elements of the New Wireless Sensor Network

1. Sensor Element in a relatively simple, low cost package

2. Communication Portal – standard laptop or cell phone
 - Provides wireless antenna, display, power, keypad

3. Interface Software – App, CD or downloaded software for a laptop

4. Conventional, existing wireless & wired networks

Protected by pending patents and US Patent 7,483,805
System Diagram

Wireless Antenna → Portal/Host Device

App Software

User Interface

Key/Touchpad

Display

USB or Bluetooth Connection

MEMS Sensor

Sensor Microprocessor, Memory and Software

PCB

Power: Rechargeable Battery & AC Outlet

Protected by pending patents and US Patent 7,483,805
Sensor data can be collected from many sources and transmitted wirelessly or across landlines.

- PCs
- Laptops
- PDAs
- Cell Phones
- Cell Towers
- Wireless
- WLANs
- Landlines
- Internet
- Wireless & Wired Sensor Network

Protected by pending patents and US Patent 7,483,805
Implementing the New Network

1. Existing sensors with USB data output and power
2. Custom sensors designed around the new concept
1. Traditional Wireless Sensors
2. New Wireless Sensing System
3. Examples at ISSYS
4. Other Applications
5. Summary
ISSYS’ First Application: Density & Chemical Concentration Sensor

Density sensors are being used for monitoring the quality of jet fuel, petrochemicals, beverages.

MEMS sensors offer a small, light-weight option for density sensing and chemical concentration. They are used in methanol fuel cells.
Resonant Silicon Microtube Technology

Silicon tubes are formed using micromachining processes such as wafer bonding, wet and plasma etching.

Density Sensing Principle: The resonant frequency of the tube is monitored, when fluid is injected into the tube, the mass and hence resonant frequency changes.
Fuel Type & Quality Monitoring Using Density

<table>
<thead>
<tr>
<th>Fuel / Fluid</th>
<th>Density Range (gm/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.00122</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.725-0.775</td>
</tr>
<tr>
<td>E85</td>
<td>0.775-0.782</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.7856</td>
</tr>
<tr>
<td>Butanol</td>
<td>0.8095</td>
</tr>
<tr>
<td>Fisher Tropsch</td>
<td></td>
</tr>
<tr>
<td>"diesel"</td>
<td>0.784-0.801</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.822-0.860</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>0.860-0.900</td>
</tr>
<tr>
<td>Water</td>
<td>0.99904</td>
</tr>
</tbody>
</table>

Density ranges of various liquid fuels and fluids.
Can detect water, air bubbles and the incorrect fuel type and be used for fuel blending.
ISSYS FuelSense™
Application: Fuel Custody Transfer

Density sensors are being used for monitoring the quality of fuels, fuel type and for blending. **Portability to monitor gasoline/fuel tanks and stations was a driving force for this wireless sensing approach**
Measuring Chemical Concentration With a Density Sensor

Methanol –Water over Temperature
“Conventional” USB Powered Sensors

Many conventional sensors now have USB outputs and can even be powered by the USB alone. However, they still carry the bulk and cost of the traditional display, buttons, keypad human interface.

These somewhat traditional sensors can be put on the new wireless sensing network.
External temperature sensor allows the process chemical temperature to be monitored in the center of large diameter pipes. External pressure sensors enable the technology to be used with gases for density and concentration measurements. These can still be USB powered. This expands what sensor data can be wirelessly transmitted or downloaded for later retrieval and transmission.
Light Gas Sensing – Hydrogen, Methane

Gas Density Versus Pressure

- **Gas Density & Concentration**

- **Pressure (KPa)**
 - 0
 - 500
 - 1000
 - 1500
 - 2000
 - 2500

- **Density (gm/cc)**
 - 0
 - 0.005
 - 0.01
 - 0.015
 - 0.02
 - 0.025
 - 0.03
 - 0.035

- **Gases**
 - Nitrogen (N₂)
 - Hydrogen (H₂)
 - Argon (Ar)
 - Carbon Dioxide (CO₂)
 - Methane (CH₄)

- **Images**
 - Gas density measurement device
 - Graph showing gas density versus pressure for different gases.
This is unique sensing technology at these low pressures with hydrogen fuel and hydrogen fuel cell applications.
Heavy Gas Sensing – SF$_6$

Use to monitor gas insulated, high voltage switches/transformers
Light Gas Concentration Sensing

Hydrogen Nitrogen Mixtures

Density (gm/cc) vs Pressure (KPa)

- 10.18% H2
- 5.18% H2
- N2

Used in air-fed, hydrogen fuel cells
Existing Sensors on a Network

A subset of existing sensors can be added to the new wireless network. However there is a cost and size penalty associated with the sensor housing and interface.
Putting a Minimized Density Sensors onto the New Wireless Network

Changed the small embedded density sensor into a simple USB powered device that replies on the laptop for power, the human interface and communication.
USB Powered - Laptop Interface Sensor

First ISSYS mobile application – fuel quality monitoring

The sensor has been stripped down to the bare minimum to save cost and size. The PC provides all of interface capabilities.

Data can be sent wirelessly or over landlines. It is also stored and processed on the laptop.

Protected by US Patent 7,483,805
Key Board /Screen—User interface can also be taken off of the sensing unit. It is part of the laptop / cell phone

Laptop and Smart Phone Display offers a richer user interface environment that an on-sensor LCD display can provide
USB Powered Density, Viscosity, Concentration, Temperature Meter

USB-only powered, with the data displayed on the laptop screen

Plot multiple sensor outputs at once

User interface also on screen or with keypad or keyboard

Multi-Sensor Systems

Need a 2 tiered interface: 1. Engineer/Scientist 2. Technician
Data Storage on Laptop / Cell Phone

Data processing & graphing can also be done on the laptop.

Memory – data storage can also be taken off of the sensing unit. It is now stored on the laptop / cell phone.
Sensing data is shared and can be gathered, analyzed and organized externally by others on the network.

Protected by pending patents and US Patent 7,483,805
Cell Phone Implementation

Cell phone already have embedded accelerometers, cameras and gyroscopes. Chemical sensors and microfluidic devices require an external device.

Cell phones can be used like laptops to perform the wireless communication platform for the density or other sensing element(s).
Laptop to Smart Phone Transition

Must simplify the display detail and user interface when converting from the laptop environment to the smart phone display and interface environment.

App options and operating systems are more diverse than what is needed for laptops: Apple OS, RIM, Symbian…
Bluetooth Variant

This opens up the technology to a wide variety of applications

 Protected by pending patents and US Patent 7,483,805
Outline

1. Traditional Wireless Sensors
2. New Wireless Sensing System
3. Examples at ISSYS
4. Other Applications
5. Summary
Other Wireless Sensor Applications

ISSYS has traditionally serviced microfluidic markets, but this concept can apply to a variety of monitoring and sensing application, including but certainly not limited to:

- **Medical Conditions** – testing blood, urine, (for example-glucose in blood or urine, white and red blood cell count, cytometry) saliva, breath, bodily fluids, antigens, pathogens, cells, genetic testing -DNA, RNA
- **Homeland Security / DoD** - biohazards, explosives, radiation – Geiger counter, chemical toxins, pathogens. Leverage the wide area coverage of existing cell phone used by first responders and others.

The detection systems required will not be incorporated onto a cell phone PCB, but can integrated externally with this type of approach.

Protected by pending patents and US Patent 7,483,805
Long-Term Remote Wireless Monitoring

Batteries can provide power but for long-term wireless monitoring, a modified AC adapter can provide power. This is key for chemical, bio-agent, seismic and radiation sensors.
Smart Phone Considerations

App availability – Keep the App proprietary to customers only (high price instrumentation markets)? or offer them in an open App Store format (pervasive personal sensors – blood glucose, blood alcohol, urology, pathogen detection, etc.)?

OS support & development – many cell phone platforms use different operating systems. They may have some shared core software but will require some custom software work.

Small display versus laptop – just like laptop software requires a service engineer versus simple user interface, a smart phone’s screen size and resolution needs to be taken into account.

Integration with GPS, motion sensors and cameras already in cell phones for expanded sensing and tracking capabilities. Example: GPS assisted tracking of dispersed pathogens
Summary- MEMS Sensing Elements: Ideal for Ubiquitous Sensing Networks

Microfluidic sensors, optical & IR sensors, capacitive piezoresistive and piezoelectric sensors elements, SAW sensors, gas chromatography sensors, mass-based resonating systems, magnetic and radiation detectors all lend themselves to this wireless sensing approach.

Protected by pending patents and US Patent 7,483,805